Abstract:Achieving reliable and efficient planning in complex driving environments requires a model that can reason over the scene's geometry, appearance, and dynamics. We present UniDWM, a unified driving world model that advances autonomous driving through multifaceted representation learning. UniDWM constructs a structure- and dynamic-aware latent world representation that serves as a physically grounded state space, enabling consistent reasoning across perception, prediction, and planning. Specifically, a joint reconstruction pathway learns to recover the scene's structure, including geometry and visual texture, while a collaborative generation framework leverages a conditional diffusion transformer to forecast future world evolution within the latent space. Furthermore, we show that our UniDWM can be deemed as a variation of VAE, which provides theoretical guidance for the multifaceted representation learning. Extensive experiments demonstrate the effectiveness of UniDWM in trajectory planning, 4D reconstruction and generation, highlighting the potential of multifaceted world representations as a foundation for unified driving intelligence. The code will be publicly available at https://github.com/Say2L/UniDWM.
Abstract:Large Vision-Language Models (LVLMs) can reason effectively from image-text inputs and perform well in various multimodal tasks. Despite this success, they are affected by language priors and often produce hallucinations. Hallucinations denote generated content that is grammatically and syntactically coherent, yet bears no match or direct relevance to actual visual input. To address this problem, we propose Residual Decoding (ResDec). It is a novel training-free method that uses historical information to aid decoding. The method relies on the internal implicit reasoning mechanism and token logits evolution mechanism of LVLMs to correct biases. Extensive experiments demonstrate that ResDec effectively suppresses hallucinations induced by language priors, significantly improves visual grounding, and reduces object hallucinations. In addition to mitigating hallucinations, ResDec also performs exceptionally well on comprehensive LVLM benchmarks, highlighting its broad applicability.
Abstract:We study stochastic contextual logistic bandits under the simple regret objective. While simple regret guarantees have been established for the linear case, no such results were previously known for the logistic setting. Building on ideas from contextual linear bandits and self-concordant analysis, we propose the first algorithm that achieves simple regret $\tilde{\mathcal{O}}(d/\sqrt{T})$. Notably, the leading term of our regret bound is free of the constant $κ= \mathcal O(\exp(S))$, where $S$ is a bound on the magnitude of the unknown parameter vector. The algorithm is shown to be fully tractable when the action set is finite. We also introduce a new variant of Thompson Sampling tailored to the simple-regret setting. This yields the first simple regret guarantee for randomized algorithms in stochastic contextual linear bandits, with regret $\tilde{\mathcal{O}}(d^{3/2}/\sqrt{T})$. Extending this method to the logistic case, we obtain a similarly structured Thompson Sampling algorithm that achieves the same regret bound -- $\tilde{\mathcal{O}}(d^{3/2}/\sqrt{T})$ -- again with no dependence on $κ$ in the leading term. The randomized algorithms, as expected, are cheaper to run than their deterministic counterparts. Finally, we conducted a series of experiments to empirically validate these theoretical guarantees.



Abstract:This paper proposes a dual-engine AI architectural method designed to address the complex problem of exploring potential trajectories in the evolution of art. We present two interconnected components: AIDA (an artificial artist social network) and the Ismism Machine, a system for critical analysis. The core innovation lies in leveraging deep learning and multi-agent collaboration to enable multidimensional simulations of art historical developments and conceptual innovation patterns. The framework explores a shift from traditional unidirectional critique toward an intelligent, interactive mode of reflexive practice. We are currently applying this method in experimental studies on contemporary art concepts. This study introduces a general methodology based on AI-driven critical loops, offering new possibilities for computational analysis of art.
Abstract:In high-performance computing, hotspot GPU kernels are primary bottlenecks, and expert manual tuning is costly and hard to port. Large language model methods often assume kernels can be compiled and executed cheaply, which fails in large applications where full builds and runs are expensive. We present an end-to-end LLM framework with performance feedback that optimizes kernels without building the full application. From independently extracted hotspot kernels, it automatically completes code into a Minimal Executable Program (MEP), then performs multi-round iterative optimization and evaluation outside the full application. The framework integrates Automatic Error Repair and Performance Pattern Inheritance to fix faults, preserve correctness, reuse effective tiling/memory/synchronization strategies, and reduce search cost. Optimized variants are reintegrated into the original application for validation. We evaluate on NVIDIA GPUs and the Haiguang Deep Computing Unit (DCU) platform (AMD-licensed architecture) using PolyBench, the AMD APP SDK, and hotspot kernels from large-scale supercomputing applications. The method achieves average speedups of 5.05x (PolyBench on NVIDIA), 7.77x (PolyBench on DCU), 1.77x (AMD APP SDK), and 1.25x on three hotspot kernels, surpassing direct LLM optimization. The approach requires no full-source dependencies, offers cross-platform portability, and enables practical, low-cost GPU kernel optimization.
Abstract:Neural Video Representation~(NVR) is a promising paradigm for video compression, showing great potential in improving video storage and transmission efficiency. While recent advances have made efforts in architectural refinements to improve representational capability, these methods typically involve complex designs, which may incur increased computational overhead and lack the flexibility to integrate into other frameworks. Moreover, the inherent limitation in model capacity restricts the expressiveness of NVR networks, resulting in a performance bottleneck. To overcome these limitations, we propose Online-RepNeRV, a NVR framework based on online structural reparameterization. Specifically, we propose a universal reparameterization block named ERB, which incorporates multiple parallel convolutional paths to enhance the model capacity. To mitigate the overhead, an online reparameterization strategy is adopted to dynamically fuse the parameters during training, and the multi-branch structure is equivalently converted into a single-branch structure after training. As a result, the additional computational and parameter complexity is confined to the encoding stage, without affecting the decoding efficiency. Extensive experiments on mainstream video datasets demonstrate that our method achieves an average PSNR gain of 0.37-2.7 dB over baseline methods, while maintaining comparable training time and decoding speed.
Abstract:Urban forecasting models often face a severe data imbalance problem: only a few cities have dense, long-span records, while many others expose short or incomplete histories. Direct transfer from data-rich to data-scarce cities is unreliable because only a limited subset of source patterns truly benefits the target domain, whereas indiscriminate transfer risks introducing noise and negative transfer. We present STRATA-TS (Selective TRAnsfer via TArget-aware retrieval for Time Series), a framework that combines domain-adapted retrieval with reasoning-capable large models to improve forecasting in scarce data regimes. STRATA-TS employs a patch-based temporal encoder to identify source subsequences that are semantically and dynamically aligned with the target query. These retrieved exemplars are then injected into a retrieval-guided reasoning stage, where an LLM performs structured inference over target inputs and retrieved support. To enable efficient deployment, we distill the reasoning process into a compact open model via supervised fine-tuning. Extensive experiments on three parking availability datasets across Singapore, Nottingham, and Glasgow demonstrate that STRATA-TS consistently outperforms strong forecasting and transfer baselines, while providing interpretable knowledge transfer pathways.
Abstract:Thanks to the development of cross-modal models, text-to-video retrieval (T2VR) is advancing rapidly, but its robustness remains largely unexamined. Existing attacks against T2VR are designed to push videos away from queries, i.e., suppressing the ranks of videos, while the attacks that pull videos towards selected queries, i.e., promoting the ranks of videos, remain largely unexplored. These attacks can be more impactful as attackers may gain more views/clicks for financial benefits and widespread (mis)information. To this end, we pioneer the first attack against T2VR to promote videos adversarially, dubbed the Video Promotion attack (ViPro). We further propose Modal Refinement (MoRe) to capture the finer-grained, intricate interaction between visual and textual modalities to enhance black-box transferability. Comprehensive experiments cover 2 existing baselines, 3 leading T2VR models, 3 prevailing datasets with over 10k videos, evaluated under 3 scenarios. All experiments are conducted in a multi-target setting to reflect realistic scenarios where attackers seek to promote the video regarding multiple queries simultaneously. We also evaluated our attacks for defences and imperceptibility. Overall, ViPro surpasses other baselines by over $30/10/4\%$ for white/grey/black-box settings on average. Our work highlights an overlooked vulnerability, provides a qualitative analysis on the upper/lower bound of our attacks, and offers insights into potential counterplays. Code will be publicly available at https://github.com/michaeltian108/ViPro.
Abstract:Digital task-oriented semantic communication (ToSC) aims to transmit only task-relevant information, significantly reducing communication overhead. Existing ToSC methods typically rely on learned codebooks to encode semantic features and map them to constellation symbols. However, these codebooks are often sparsely activated, resulting in low spectral efficiency and underutilization of channel capacity. This highlights a key challenge: how to design a codebook that not only supports task-specific inference but also approaches the theoretical limits of channel capacity. To address this challenge, we construct a spectral efficiency-aware codebook design framework that explicitly incorporates the codebook activation probability into the optimization process. Beyond maximizing task performance, we introduce the Wasserstein (WS) distance as a regularization metric to minimize the gap between the learned activation distribution and the optimal channel input distribution. Furthermore, we reinterpret WS theory from a generative perspective to align with the semantic nature of ToSC. Combining the above two aspects, we propose a WS-based adaptive hybrid distribution scheme, termed WS-DC, which learns compact, task-driven and channel-aware latent representations. Experimental results demonstrate that WS-DC not only outperforms existing approaches in inference accuracy but also significantly improves codebook efficiency, offering a promising direction toward capacity-approaching semantic communication systems.
Abstract:The evolution of video generation techniques, such as Sora, has made it increasingly easy to produce high-fidelity AI-generated videos, raising public concern over the dissemination of synthetic content. However, existing detection methodologies remain limited by their insufficient exploration of temporal artifacts in synthetic videos. To bridge this gap, we establish a theoretical framework through second-order dynamical analysis under Newtonian mechanics, subsequently extending the Second-order Central Difference features tailored for temporal artifact detection. Building on this theoretical foundation, we reveal a fundamental divergence in second-order feature distributions between real and AI-generated videos. Concretely, we propose Detection by Difference of Differences (D3), a novel training-free detection method that leverages the above second-order temporal discrepancies. We validate the superiority of our D3 on 4 open-source datasets (Gen-Video, VideoPhy, EvalCrafter, VidProM), 40 subsets in total. For example, on GenVideo, D3 outperforms the previous best method by 10.39% (absolute) mean Average Precision. Additional experiments on time cost and post-processing operations demonstrate D3's exceptional computational efficiency and strong robust performance. Our code is available at https://github.com/Zig-HS/D3.